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We address the following important question: how to distinguish Kitaev models experimentally realized on
small lattices from other nontopological interacting spin models. Based on symmetry arguments and exact
diagonalization, we show that a particularly characteristic pattern of spin-spin correlations survives despite
finite size, open boundary, and thermal effects. The pattern is robust against small residual perturbing interac-
tions and can be utilized to distinguish the Kitaev interactions from other interactions such as antiferromagnetic
Heisenberg interactions. The effect of external magnetic field is also considered and found to be not critical.
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I. INTRODUCTION

A great deal of interest1–3 has recently focused on the
possible realization of exotic anyonic quasiparticle statistics
in two-dimensional interacting topological systems. Much of
this interest arises from the intrinsic fundamental signifi-
cance of anyons, which are neither fermions nor bosons, and
are thus theoretically allowed only in two dimensions where
particle exchange is characterized by the braid group rather
than the permutation group �as in ordinary three-dimensional
systems�. The possibility of carrying out fault-tolerant topo-
logical quantum computation1–4 using anyonic braiding is
another key reason for the current interest in the subject.

Broadly speaking, there are two alternative and comple-
mentary routes which have been pursued in the literature for
the physical realization of the topological phase and anyonic
quasiparticles. One route1 is studying physically occurring
quantum states in nature which are believed �or perhaps con-
jectured� to be anyonic in character because their low-energy
properties are thought to be well described by some model
topological quantum field theory. The prime example of such
a situation is the 5/2 fractional quantum Hall state5 which is
widely considered to belong to the �SU2�2 conformal field
theory.1 A great deal of experimental6 and theoretical7 work
is currently being pursued all over the world with the goal of
realizing the fractional quantum Hall topological qubit using
the non-Abelian anyonic quasiparticle braiding statistics.1

Closely related to the 5/2 topological fractional quantum
Hall state is the chiral p-wave superconducting state8 in
SrRuO3 or cold atoms where anyonic Majorana particles
may exist. The second route to the realization of the topo-
logical phase, pioneered by Kitaev2,3 and the subject matter
of our work, involves the explicit construction of model spin
Hamiltonians which, by design, have topological ground
states with Abelian or non-Abelian anyonic quasiparticle ex-
citations. In addition to the Kitaev model, topological matter
in this category of model Hamiltonian systems includes the
Levin-Wen model.9 We note the interesting �and somewhat
ironic� dichotomy between the two classes of topological
matter discussed above: in the first category, the physical
systems �e.g., the 5/2 quantum Hall state� exist in nature but
may not be topological whereas in the second category, the
model Hamiltonians are, by design, topological but may not
exist in nature.

In this work, we consider the important issue of the extent
to which the topological character of the Kitaev model can
be preserved in a finite-size system �e.g., a few plaquettes
only�, which could possibly be physically implemented in an
atomic system such as an ion trap lattice or a cold-atom �or
molecular� optical lattice with suitable interactions. We do
not discuss the logistical question of how to construct such a
lattice, which has much been discussed in the recent
literature.10 Our focus here is on the deep and fundamental
question of which characteristic properties of the thermody-
namic Kitaev model could be manifested in a finite-size lat-
tice of only a few plaquettes. We find, rather surprisingly,
that a few plaquettes may be enough to preserve several
characteristic features of the Kitaev model. An important
possible application of our results could be the development
of techniques to check whether a particular finite-size atomic
�or ionic or molecular� system is likely to manifest topologi-
cal behavior. Recently, low-order finite-size effects are
shown to affect the ground-state topological degeneracy.11

Given the great recent success of atomic systems as emula-
tors of well-known strongly correlated model Hamiltonians
�e.g., the Bose-Hubbard model and the fermionic Hubbard
model�, it seems likely that a small finite-size Kitaev model
made of ion traps or polar molecules could lead to the emu-
lation of a topological phase in the laboratory. The current
state of the art in creating many-body ground states using ion
trap is three ions.12,13 It is not unlikely that 10–12 ions can be
achieved in the next couple of years and theory ideas with
those numbers of spins will be of great interests to
experimentalists.14 In this paper, we study a system of 16
spins, which is close to the limit of what can be done nu-
merically. Our paper is thus timely and important because
our results will be necessary in order to validate the experi-
mental data in ion traps when they become available. Our
theoretical results, establishing the impressive robustness of
topological matter, arising from the large number of non-
trivial independent conserved operators in the model and
quantitatively verified by explicit exact diagonalization cal-
culations, apply to both the Kitaev honeycomb lattice and the
toric code. In addition to the finite-size behavior of the Ki-
taev model, we also study the robustness of such small sys-
tems to possible perturbing interactions and external mag-
netic fields, establishing quantitative criteria for the
observation of the characteristic thermodynamic Kitaev
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model features in realistic small atomic systems. Let us also
mention that it is an important theoretical question to study
how the thermodynamic limit is reached by increasing the
system size. However, this is well beyond the scope of this
paper, which studies a different question of what can be seen
in small experimental systems.

In this work, we focus on the measurements of local ob-
jects such as spin-spin correlations and magnetization in an
open-boundary system. We are motivated by the existence of
a large set of local conserved quantities in the Kitaev
models.2,3 Based on symmetry arguments, we are able to
conclude that the local conserved quantities impose very
strict constraints on spin-spin correlations,15 and an ex-
tremely characteristic pattern emerges in the spatial distribu-
tion of spin-spin correlations. More interestingly, this pattern
is protected against small size, open boundary, and thermal
effects. It is also robust against small perturbing interactions
that may be present in realistic experimental setups. Our
main results are summarized in Fig. 2 where the characteris-
tic ordered emergent correlation pattern of the Kitaev model
are compared with the messy results of the anisotropic
Heisenberg model shown in Fig. 3.

II. KITAEV MODEL ON SMALL HONEYCOMB LATTICE

We first study the Kitaev model3 on a honeycomb lattice
sketched in the top left panel of Fig. 2,

H = �
�=x,y,z

�
� bonds

J��b
��w

� , �1�

where the subscripts b and w denote the two end sites �black
or white� of nearest-neighbor bonds and �’s are the Pauli

matrices. This model is exactly soluble and supports anyonic
excitations with both Abelian and non-Abelian anyonic
braiding statistics. The model Hamiltonian guarantees topo-
logical protection of the system and thus the fault tolerance
in topological quantum computation.2,3 This model has two
phases.3 The gapped phase has Abelian anyons as excitations
whereas the gapless one supports non-Abelian anyonic exci-
tations in the presence of an external magnetic field.

A. Gapped phase

We first study a gapped phase with Jx=0.3, Jy =0.4, and
Jz=1.0 because gapped state is of immediate interests to ex-
perimentalists. The symmetry argument and conclusion pre-
sented in this work do no depend on the specific choice of
the parameters as the symmetry argument hold for both
gapped and gapless phases.

For each plaquette, there is one conserved quantity. For
instance, for the plaquette enclosed by sites 1–6, the operator
Wp=�1

y�2
z�3

x�4
y�5

z�6
x is conserved.3 These conserved quanti-

ties have profound implications for the physics of the Kitaev
model.3,15–17 If the conservation law applies, the spin-spin
correlation functions are extremely anisotropic and short
ranged, as shown in Fig. 2.

However, for the open-boundary case, the boundary
terms, such as W=�1

z�2
y in the 16-site lattice of Fig. 2, may

not commute with each other. For instance, ��1
z�2

y ,H�
= ��2

x�3
z�7

z ,H�=0 but ��1
z�2

y ,�2
x�3

z�7
z��0. Therefore, in a

pure ground state, some of the symmetries involving the
boundary spins might be broken, and consequently the spin-
spin correlation functions involving the boundary spins can
have finite values. In the 16-site lattice of Fig. 2, only the
fourth and tenth sites are not on the boundary and the re-
maining 14 sites are all boundary sites. In Fig. 1, we plot the
correlation functions in a typical pure ground state of the�Σi

x Σ j
x� �Σi

x Σ j
y
� �Σi

x Σ j
z�

�Σi
y
Σ j

x� �Σi
y
Σ j

y
� �Σi

y
Σ j

z�

�Σi
z Σ j

x� �Σi
z Σ j

y
� �Σi

z Σ j
z�

FIG. 1. �Color online� Spin-spin correlation functions of the
16-site Kitaev model in a pure ground state. The coupling strengths
are Jx=0.3, Jy =0.4, and Jz=1.0. Solid red �dashed blue� bond de-
notes negative �positive� correlation. Bond thickness is proportional
to the magnitude of the correlation. Empty bonds denote zero
correlations.
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FIG. 2. �Color online� Top left: honeycomb lattice of 16 sites
and three types of bonds. Others: spin-spin correlations in the low-
temperature thermal equilibrium state. All other components such
as ��x�y� vanish identically.
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16-site Kitaev model with parameters Jx=0.3, Jy =0.4, and
Jz=1.0. As expected, finite correlations are found between
the boundary spins. Furthermore, the ground state is 16-fold
degenerate. This can be understood based on the exact map-
ping introduced in Refs. 15 and 18. Sites 2, 7, 12, and 16
have dangling Majorana fermions, each of which contributes
a factor of �2 to the ground-state degeneracy. Also, each
horizontal row of the z bonds has a Z2 degree of freedom.
Combining all these contributions, we obtain the degeneracy
��2�4�22=16.

Since the ground state is degenerate, different pure
ground-state wave functions lead to different spin-spin cor-
relation functions. Therefore, it is important to control the
experimental realization of the ground state. One interesting
and simple situation is the thermal equilibrium state instead
of a pure state. For a thermal equilibrium state at zero tem-
perature, the density matrix is ���	g.s.�	g.s.��g.s.	, where the
summation is over all degenerate ground states 
	g.s.��. In
this symmetric mixed state, the broken symmetries are re-
stored, and one would expect correlation functions to vanish

unless the two conditions are satisfied. This can be easily
seen from the exact diagonalization results plotted in Fig. 2.
We thus obtain our main result. The spin-spin correlation
functions of the Kitaev model on the honeycomb lattice are
extremely short ranged and anisotropic. As a comparison, we
plot the correlation functions of the anisotropic Heisenberg
model on the same 16-site lattice in Fig. 3. In this case, the
correlation functions are all over the real space and dramati-
cally different from the case of Kitaev model in Fig. 2.

Because unwanted perturbing interactions are inevitable
in any experimental realization, it is necessary to study their
effects. In particular, we consider the uniform antiferromag-
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z�

FIG. 3. �Color online� Spin-spin correlations for the anisotropic
Heisenberg model H=��bw���J��b

��w
� with parameters Jx=0.3, Jy

=0.4, and Jz=1.0. This is dramatically different from the case of
Fig. 2 of Kitaev model.
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FIG. 4. �Color online� Spin-spin correlation functions on a lat-
tice of 16 sites. Top three panels are pure Kitaev model and the
Bottom three panels are pure antiferromagnetic Heisenberg model.
Middle six panels are Kitaev model with residue Heisenberg inter-
actions with strength Jh. The parameters for Kitaev model are Jx

=0.3, Jy =0.4, and Jz=1.0.
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FIG. 5. �Color online� Spin-spin correlations and spin moment
in the low-temperature thermal equilibrium state when a uniform
magnetic field Bz=0.1 along the z direction is applied. In the right-
bottom panel, red �blue� denotes negative �positive� moment. The
size of dot denotes the magnitude of spin moment. ��2

z�=0.78.
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FIG. 6. �Color online� Magnetization �i��i
z� /16 in Kitaev model

as a function of uniform external magnetic field Bz along the z
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netic Heisenberg interaction Hres=Jh��bw����b
��w

�. Although
this perturbation destroys the local conserved quantities, the
pattern in Fig. 2 survives when the residual interaction is a
few percent of the coupling strength Jx ,Jy ,Jz. In Fig. 4, we
plot the calculated correlations in the presence of antiferro-
magnetic perturbation as functions of the distance between
two spins. In the top panels, we plot the results of a pure
Kitaev model. One can only find finite correlations for some
of the nearest-neighboring bonds, as we discussed previ-
ously. As we increase the perturbation to Jh=0.003, which is
1% of Jx, small correlations start to develop between next-
nearest neighbors and next-next-nearest neighbors. Neverthe-
less, the dimerization along z bonds is still very strong, i.e.,
the difference between strong and weak ��z�z� correlations
remains evident. As the perturbation further increases to 5%
of Jx �Jh=0.015�, more long-range correlations emerge and
reach as high as about 30% of the strongest correlations of
the nearest-neighbor bonds. However, it still has a much
shorter tail than the pure Heisenberg model, which is shown
in the bottom panels. Furthermore, the difference between
strong and weak ��z�z� correlations is still visible. Therefore,
we conclude that it is necessary to control any residual inter-
actions within a few percent of the Kitaev coupling strength
to successfully observe the characteristic Kitaev pattern de-
picted in Fig. 2.

We now turn to another important effect, namely, the ef-
fect of an external magnetic field. When an external mag-
netic field is applied, the conserved quantities defined on
plaquettes are no longer good quantum numbers. However,
other conserved quantities defined on the zigzag chains
might survive. When the field is along the z direction, the
products of �z on the horizontal zigzag chains, e.g.,
�1

z�2
z�3

z�7
z�8

z , still commute with the full Hamiltonian and
with each other. Consequently, the correlations between two
spin components along x or y direction can have finite values
only if they belong to the same horizontal zigzag chains, as
seen in the first two panels of Fig. 5. Longer-range correla-
tions are developed in the z components. As long as Bz is

small compared with Jz, z bonds are still dominated by sin-
glets formed between two end spins. Overall, the character-
istic pattern of Fig. 2 is clearly visible in Fig. 5. On sites 2,
7, 12, and 16, where dangling Majorana fermions exist when
Bz=0, sizeable spin moment is induced along the field direc-
tion, as plotted in the third panel of Fig. 5. Significant mag-
netization along the field direction is thus observed even for
a small magnetic field, as shown in Fig. 6. This is opposite to
the case of anisotropic Heisenberg model, where a spin gap
prevents the magnetization of spins at low temperature.

There are two gaps in this problem, one is the gap of the
fermionic excitations, which separates the gapless and the
gapped phase in Kitaev model. The other gap is the energy
cost to create an anyonic vortex or flip a plaquette order
parameter. This second one is always finite. It is the second
gap that is directly related to those �local� plaquette symme-
tries. This gap protects the pattern we observed. At finite
temperature, excited states will also contribute to the corre-
lation functions. Fortunately, as long as the temperature is
not high enough to break the second-type gap, the symmetry
argument holds not only for the ground state but also for
excited states. The pattern of Fig. 2 is thus protected by the
local symmetries and thermal fluctuations have no effect on
it.

B. Gapless phase

It is also noteworthy to point out that the results presented
above also hold in the gapless phase. In the gapless phase,
fermions are free to proliferate. However, they do not break
the local conserved symmetries defined on each plaquette.
Therefore, the symmetry argument that leads to the aniso-
tropic and short-ranged pattern in Fig. 2 is also valid in the
gapless phase. Exact diagonalization for the gapless phase
also leads to similar conclusions about the robustness of this
pattern. As an example, we show the results for Jx=0.7, Jy
=0.4, and Jz=1 in Fig. 7.
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FIG. 7. �Color online� Spin-spin correlations in the gapless phase of Kitaev model on a lattice of 16 sites.
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III. TORIC CODE MODEL ON A SMALL LATTICE

We also study an equivalence of the Kitaev toric code.19,20

The model is defined on a square lattice,

Htoric = �
r�

J�r�
x�r�+êx

y �r�+êx+êy

x �r�+êy

y , �2�

where r� is the lattice point of square lattice spanned by êx
and êy. This model proposed by Wen19 was shown to be
equivalent20 to the toric code of Kitaev.2 The terms in Eq. �2�
commute with each other and form a large set of local con-
served quantities. It is thus possible to apply similar symme-
try arguments and obtain similar constraints on spin-spin cor-
relation functions. However, in this model, the symmetry
argument does not apply to some bonds near the four corners
of the square lattice. Nevertheless, as we can see in the first
row of Fig. 8, spin-spin correlations vanish or are negligibly
small. As a perturbing Heisenberg interaction is introduced,
small correlations start to emerge. When Jh=0.2J, the spin-
spin correlations are already dominated by the perturbing
interactions, as shown in the third and fourth rows in Fig. 8.
Therefore, we conclude that to observe the toric code on
small lattices, one has to limit residual interactions up to a
few percent of the coupling strength J.

IV. CONCLUSION

In conclusion, we study the spin-spin correlations for two
Kitaev models on a small lattice. It is shown that the short-
range nature of these correlation functions survives the
finite-size effect.
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FIG. 8. �Color online� Correlations in toric code model of Eq.
�2�. Top three panels are pure toric code model. The second and
third rows are toric mode with uniform antiferromagnetic Heisen-
berg interactions. The last row is pure Heisenberg model on square
lattice. The coupling strength of toric code is J=1.
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